68 research outputs found

    Space Mapping and Defect Correction

    Get PDF
    In this chapter we present the principles of the space-mapping iteration techniques for the efficient solution of optimization problems. We also show how space-mapping optimization can be understood in the framework of defect correction. We observe the difference between the solution of the optimization problem and the computed space-mapping solutions. We repair this discrepancy by exploiting the correspondence with defect correction iteration and we construct the manifold-mapping algorithm, which is as efficient as the space-mapping algorithm but converges to the true solution. In the last section we show a simple example from practice, comparing space-mapping and manifold mapping and illustrating the efficiency of the technique

    Automated synthesis of transmission lines loaded with complementary split ring resonators (CSRRs) and open complementary split ring resonators (OCSRRs) through aggressive space mapping (ASM)

    Get PDF
    This paper is focused on the application of space mapping optimization to the automated synthesis of transmission lines loaded with complementary split ring resonators (CSRRs) and open complementary split ring resonators (OCSRRs). These structures are of interest for the implementation of resonant-type metamaterial transmission lines and for the design of planar microwave circuits based on such complementary resonators. The paper presents a method to generate the layouts of CSRR- and OCSRR-loaded microstrip lines from the elements of their equivalent circuit models. Using the so-called aggressive space mapping, a specific implementation that uses quasi-Newton type iteration, we have developed synthesis algorithms that are able to provide the topology of these CSRR and OCSRR-loaded lines in few steps. The most relevant aspect, however, is that this synthesis process is completely automatic, i.e., it does not require any action from the designers, other than initiating the algorithm. Moreover, this technique can be translated to other electrically small planar elements described by lumped element equivalent circuit models.This work has been partially supported by MICIIN-Spain (Projects TEC2010-17512 METATRANSFER, TEC2010-21520-C04-01 AVANSAT, CONSOLIDER EMET CSD2008-00066, and Grant AP2008-04707), Generalitat de Catalunya (Project 2009SGR-421), and MITyC-Spain (Project TSI-020100-2010-169 METASINTESIS). Ferran Martin is in debt to ICREA for supporting his work through an ICREA Academia Award (calls 2008 and 2013).Selga, J.; Rodríguez Pérez, AM.; Orellana, M.; Boria Esbert, VE.; Martín, F. (2014). Automated synthesis of transmission lines loaded with complementary split ring resonators (CSRRs) and open complementary split ring resonators (OCSRRs) through aggressive space mapping (ASM). Applied Physics A. 117(2):557-565. https://doi.org/10.1007/s00339-014-8703-xS5575651172G.V. Eleftheriades, K.G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications (Wiley, New Jersey, 2005)C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, New Jersey, 2006)R. Marqués, F. Martín, M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Wiley, New Jersey, 2008)F. Martín, Artificial Transmission Lines for RF and Microwave Applications. (Wiley, New Jersey) (to be published)M.A. Antoniades, G.V. Eleftheriades, A broadband series power divider using zero-degree metamaterial phase shifting lines. IEEE Microw. Wirel. Compon. Lett. 15, 808–810 (2005)H. Okabe, C. Caloz, T. Itoh, A compact enhanced bandwidth hybrid ring using an artificial lumped element left handed transmission line section. IEEE Trans. Microw. Theory Tech. 52, 798–804 (2004)G. Sisó, J. Bonache, M. Gil, F. Martín, Application of resonant-type metamaterial transmission lines to the design of enhanced bandwidth components with compact dimensions. Microw. Opt. Technol. Lett. 50, 127–134 (2008)I.H. Lin, M. De Vincentis, C. Caloz, T. Itoh, Arbitrary dual-band components using composite right/left handed transmission lines. IEEE Trans. Microw. Theory Tech. 52, 1142–1149 (2004)A.C. Papanastasiou, G.E. Georghiou, G.V. Eleftheriades, A quad-band Wilkinson power divider using generalized NRI transmission lines. IEEE Microw. Wirel. Compon. Lett. 18, 521–523 (2008)M. Durán-Sindreu, G. Sisó, J. Bonache, F. Martín, Planar multi-band microwave components based on the generalized composite right/left handed transmission line concept. IEEE Trans. Microw. Theory Tech. 58(12), 3882–3891 (2010)J. Bonache, I. Gil, J. García-García, F. Martín, Novel microstrip band pass filters based on complementary split ring resonators. IEEE Trans. Microw. Theory Tech. 54, 265–271 (2006)M. Gil, J. Bonache, J. García-García, J. Martel, F. Martín, Composite right/left handed (CRLH) metamaterial transmission lines based on complementary split rings resonators (CSRRs) and their applications to very wide band and compact filter design. IEEE Trans. Microw. Theory Tech. 55, 1296–1304 (2007)S. Lim, C. Caloz, T. Itoh, Metamaterial-based electronically-controlled transmission line structure as a novel leaky-wave antenna with tunable angle and beamwidth. IEEE Trans. Microw. Theory Tech. 52(12), 2678–2690 (2004)G. Zamora, S. Zuffanelli, F. Paredes, F. Javier Herraiz-Martínez, F. Martín, J. Bonache, Fundamental mode leaky-wave-antenna (LWA) using slot line and split-ring-resonator (SRR) based metamaterials. IEEE Antennas Wirel. Propag. Lett. 12, 1424–1427 (2013)A.K. Iyer, G.V. Eleftheriades, Negative refractive index metamaterials supporting 2-D waves. in IEEE-MTT Int’l Microwave Symposium, vol 2, Seattle, WA, pp. 412–415 (2002)A.A. Oliner, A periodic-structure negative-refractive-index medium without resonant elements. In URSI Digest, IEEE-AP-S USNC/URSI National Radio Science Meeting, San Antonio, TX, pp. 41 (2002)C. Caloz, T. Itoh, Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line. in Proceedings of IEEE-AP-S USNC/URSI National Radio Science Meeting, vol 2, San Antonio, TX, pp. 412–415 (2002)F. Martín, F. Falcone, J. Bonache, R. Marqués, M. Sorolla, Split ring resonator based left handed coplanar waveguide. Appl. Phys. Lett. 83, 4652–4654 (2003)F. Falcone, T. Lopetegi, M.A.G. Laso, J.D. Baena, J. Bonache, R. Marqués, F. Martín, M. Sorolla (2004) Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93, paper 197401M. Durán-Sindreu, A. Vélez, F. Aznar, G. Sisó, J. Bonache, F. Martín, Application of open split ring resonators and open complementary split ring resonators to the synthesis of artificial transmission lines and microwave passive components. IEEE Trans. Microw. Theory Tech. 57, 3395–3403 (2009)A. Vélez, F. Aznar, M. Durán-Sindreu, J. Bonache, F. Martín, Stop-band and band-pass filters in coplanar waveguide technology implemented by means of electrically small metamaterial-inspired open resonators. IET Microw. Antennas Propag. 4, 712–716 (2004)J.D. Baena, J. Bonache, F. Martín, R. Marqués, F. Falcone, T. Lopetegi, M.A.G. Laso, J. García, I. Gil, M. Flores-Portillo, M. Sorolla, Equivalent circuit models for split ring resonators and complementary split rings resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53, 1451–1461 (2005)M. Gil, J. Bonache, J. Selga, J. García-García, F. Martín, Broadband resonant type metamaterial transmission lines. IEEE Microw. Wirel. Compon. Lett. 17, 97–99 (2007)M. Durán-Sindreu, P. Vélez, J. Bonache, F. Martín, Broadband microwave filters based on open split ring resonators (OSRRs) and open complementary split ring resonators (OCSRRs): improved models and design optimization. Radioengineering 20, 775–783 (2011)P. Vélez, J. Naqui, M. Durán-Sindreu, J. Bonache, F. Martín, Broadband microstrip bandpass filter based on open complementary split ring resonators. Int. J. Antennas Propag. 2012, 6 (2012)J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny, R.H. Hemmers, Space mapping technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech. 42, 2536–2544 (1994)J.W. Bandler, R.M. Biernacki, S.H. Chen, R.H. Hemmers, K. Madsen, Electromagnetic optimization exploiting aggressive space mapping. IEEE Trans. Microw. Theory Tech. 43, 2874–2882 (1995)J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, J. Søndergaard, Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52, 337–361 (2004)C.G. Broyden, A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19(92), 577–593 (1965)J. Selga, A. Rodríguez, V.E. Boria, F. Martín, Synthesis of split rings based artificial transmission lines through a new two-step, fast converging, and robust aggressive space mapping (ASM) algorithm. IEEE Trans. Microw. Theory Tech. 61(6), 2295–2308 (2013)A. Velez, F. Aznar, J. Bonache, M.C. Velázquez-Ahumada, J. Martel, F. Martín, Open complementary split ring resonators (OCSRRs) and their application to wideband CPW band pass filters. IEEE Microw. Wirel. Compon. Lett. 19, 197–199 (2009)D.M. Bates, D.G. Watts, Nonlinear Regression Analysis and Its Applications (Wiley, New York, 1998

    The ATHENA X-ray Integral Field Unit (X-IFU)

    Get PDF
    The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5' equivalent diameter, it will deliver X-ray spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV on ∼ 5" pixels. The X-IFU is based on a large format array of super-conducting molybdenum-gold Transition Edge Sensors cooled at ∼ 90 mK, each coupled with an absorber made of gold and bismuth with a pitch of 249 μm. A cryogenic anti-coincidence detector located underneath the prime TES array enables the non X-ray background to be reduced. A bath temperature of ∼ 50 mK is obtained by a series of mechanical coolers combining 15K Pulse Tubes, 4K and 2K Joule-Thomson coolers which pre-cool a sub Kelvin cooler made of a 3He sorption cooler coupled with an Adiabatic Demagnetization Refrigerator. Frequency domain multiplexing enables to read out 40 pixels in one single channel. A photon interacting with an absorber leads to a current pulse, amplified by the readout electronics and whose shape is reconstructed on board to recover its energy with high accuracy. The defocusing capability offered by the Athena movable mirror assembly enables the X-IFU to observe the brightest X-ray sources of the sky (up to Crab-like intensities) by spreading the telescope point spread function over hundreds of pixels. Thus the X-IFU delivers low pile-up, high throughput (< 50%), and typically 10 eV spectral resolution at 1 Crab intensities, i.e. A factor of 10 or more better than Silicon based X-ray detectors. In this paper, the current X-IFU baseline is presented, together with an assessment of its anticipated performance in terms of spectral resolution, background, and count rate capability. The X-IFU baseline configuration will be subject to a preliminary requirement review that is scheduled at the end of 2018

    Safety out of control: dopamine and defence

    Full text link

    Computer-aided design of RF and microwave circuits and systems

    No full text
    The history of RF and microwave computer-aided engineering is documented in the annals of the IEEE Microwave Theory and Techniques Society. The era began with elaborate analytically based models of microwave components and simple computer-aided techniques to cascade, cascode, and otherwise connect linear component models to obtain the responses of linear microwave circuits. Development has become rapid with computer-oriented microwave practices addressing complex geometries and with the ability to globally model and optimize large circuits. The pursuit of accurate models of active devices and of passive components continues to be a key activit
    • …
    corecore